

RAMCO INSTITUTE OF TECHNOLOGY

Approved by AICTE, New Delhi & Affiliated to Anna University Accredited by NAAC & An ISO 9001: 2015 Certified Institution NBA Accredited UG Programs: CSE, EEE, ECE and MECH

Department of Mechanical Engineering Academic Year 2021 – 2022 (Even Semester)

Degree, Semester & Branch: IV Semester B.E. Mechanical Engineering

Course Code & Title: ME8493 Thermal Engineering - I

Name of the Faculty member(s): Dr.V.Sivakumar, ACSP/ Mechanical

Mr.M.Ashok Kumar, AP (SG)/Mechanical

Innovative Practice Description

- Unit / Topic: Unit I / Change in air standard efficiency with respect to cut-off ratio
- Course Outcome: CO1 The students will be able to apply thermodynamic concepts for different air standard cycle and solve problems.

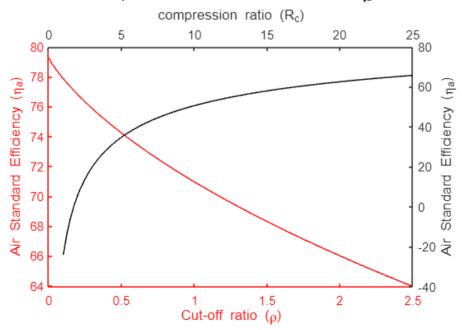
Topic Learning Outcome: TLO 3: Derive the expression for air standard efficiency and Mean Effective Pressure for the Otto, Diesel, Dual and Brayton cycle.

- Activity Chosen: Software tool used
- **Justification:** The change in efficiency with respect to compression ratio in Otto cycle and with respect to cut-off ration in Diesel cycle can be visualize by the students while using a software tool like MATLAB.
- Time Allotted for the Activity: 15 min

Details of the Implementation:

In internal combustion engine the heat energy is converted into work energy. Diesel engine follows the diesel cycle and the heat added in diesel cycle by constant pressure process. During constant pressure heat addition there is a volume change in the cylinder of the engine, this volume ration is during the constant pressure heat addition is called cut-off ratio. The air standard efficiency of the diesel engine is mainly depends on two variables Compression ratio and cut-off ratio. In order to understand the change in air standard efficiency with respect to cut-off ratio, the air standard efficiency has to be calculated for the different cut-off ratio manually and it is time consuming. So make the students to understand the concept of air standard efficiency variation in the diesel engine with respect to the cut-off ration, we encourage our students to calculate the air standard efficiency of diesel cycle with respect to the cut-off ratio by using MATLAB coding. Compression ratio is an important parameter which is influenced on the air standard efficiency in both petrol engine and diesel engine. So the students are encouraged to visualize change in air standard efficiency with change in compression ratio using MATLAB coding.

Problem Statement


Draw the graph Cut-off ratio Vs. Air standard efficiency for the diesel cycle using MATLAB Coding.

```
MATLAB Program:
```

```
gamma = 1.4;
x1 = linspace(0, 2.5, 100);
y1 = (1-((1/22.^(gamma-1)).*(1/gamma).*((x1.^gamma)-1)./((x1)-
1)))*100;
x2 = linspace(1, 25, 100);
y2 = (1-((1./x2.^(gamma-1)).*(1/gamma).*((2.5.^gamma)-1)./((2.5)-
1))).*100;
t = tiledlayout(1,1);
ax1 = axes(t);
plot(ax1,x1,y1,'-r')
ax1.XColor = 'r';
ax1.YColor = 'r';
ax2 = axes(t);
plot(ax2,x2,y2,'-k')
ax2.XAxisLocation = 'top';
ax2.YAxisLocation = 'right';
ax2.Color = 'none';
ax1.Box = 'off';
ax2.Box = 'off';
xlabel(ax2, 'compression ratio (R c)')
ylabel(ax2, 'Air Standard Efficiency (\eta a)')
xlabel(ax1, 'Cut-off ratio (\rho)', 'Color', 'r')
ylabel(ax1, 'Air Standard Efficiency (\eta_a)', 'Color', 'r')
title('Compression ratio & Cut-off ratio Vs \eta a')
```

Output:

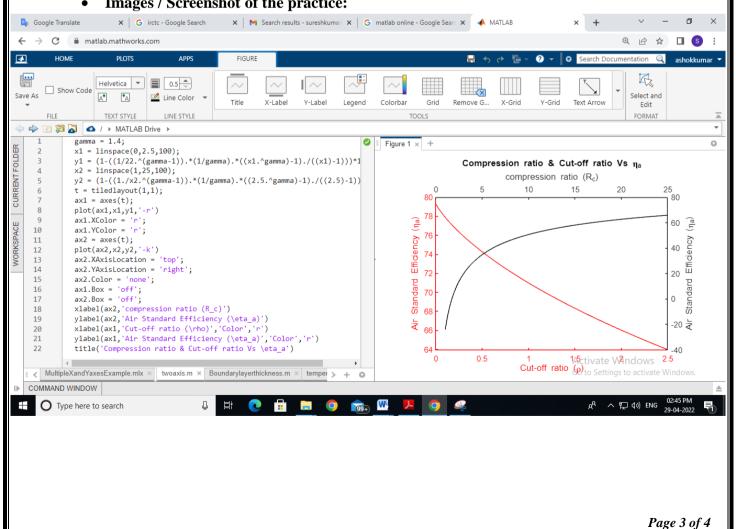
Compression ratio & Cut-off ratio Vs na

Page 2 of 4 Effective Date: 02.08.2021

PO / PSO mapping for the activity:

Innovative Practice	PO1	PO2	PO5	PSO3
Level of mapping	3	3	1	3
		Derive the	To explain the	Calculate the
	To solve the	formula using	relationship	performance
	problem the	mathematics,	between	parameters of
	student will	natural	compression	Gas power
	apply the	science and	ratio and air	cycles –
Justification for correlation	mathematical,	engineering	standard	Level 3
	science and	science to	efficiency	
	engineering	calculate the	using	
	fundamentals	performance	MATLAB –	
	– Level 3	parameters –	Level 1	
		Level 3		

2 – Moderate (1 - Low)3 - High)


CO – PO / PSO mapping:

Form No. AC 10c

CO	PO1	PO2	PO5	PO9	PSO3
CO1	3	3	1	1	3

(1 - Low)2 – Moderate 3 - High)

Images / Screenshot of the practice:

Rev.No.01

Effective Date: 02.08.2021

Reflective Critique:

> Feedback of practice from students and other stakeholders: (samples to be enclosed)

Feedback received from students and the sample is enclosed

- ➤ Benefit of the practice: The students can be easily visualize the change in thermal efficiency with respect to change in influence parameter in Otto and Diesel cycle.
- Whether the practice is adopted in any of the courses early: Yes

(If yes provide the details and the modifications you have adopted)

A new program is developed by using the command linspace and plot in MATLAB and the change in efficiency with respect to the different parameter fit in one graph is not adopted in other courses which is adopted in this course thermal engineering – I first time.

- Challenges faced in implementation: Nil
- References:
 - Kothandaraman.C.P., Domkundwar. S,Domkundwar. A.V., "A course in thermal Engineering", Fifth Edition, "Dhanpat Rai & sons, 2016.
 - Rao V. Dukkipati., "MATLAB for Mechanical Engineers", First edition, New Age International Publishers, 2008.

CO1: Student will be able to apply thermodynamic concepts of different air standard cycles and solve problems.

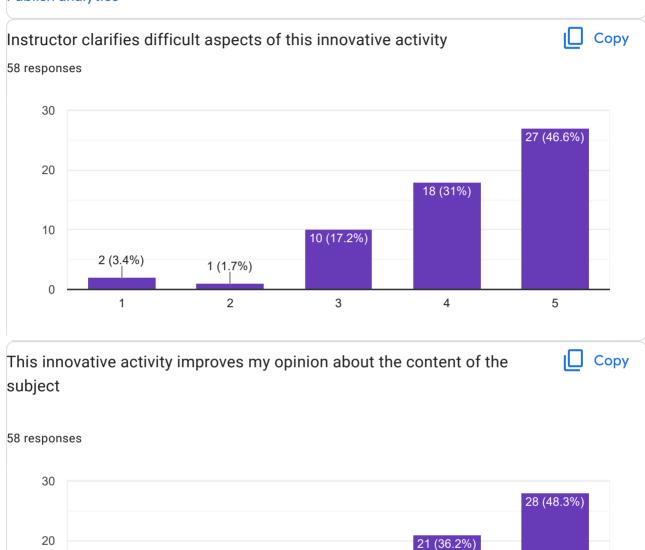
Signature of Faculty Member

HOD

Page 4 of 4

Thermal Engineering - I - Student feedback on Innovative Practice

58 responses

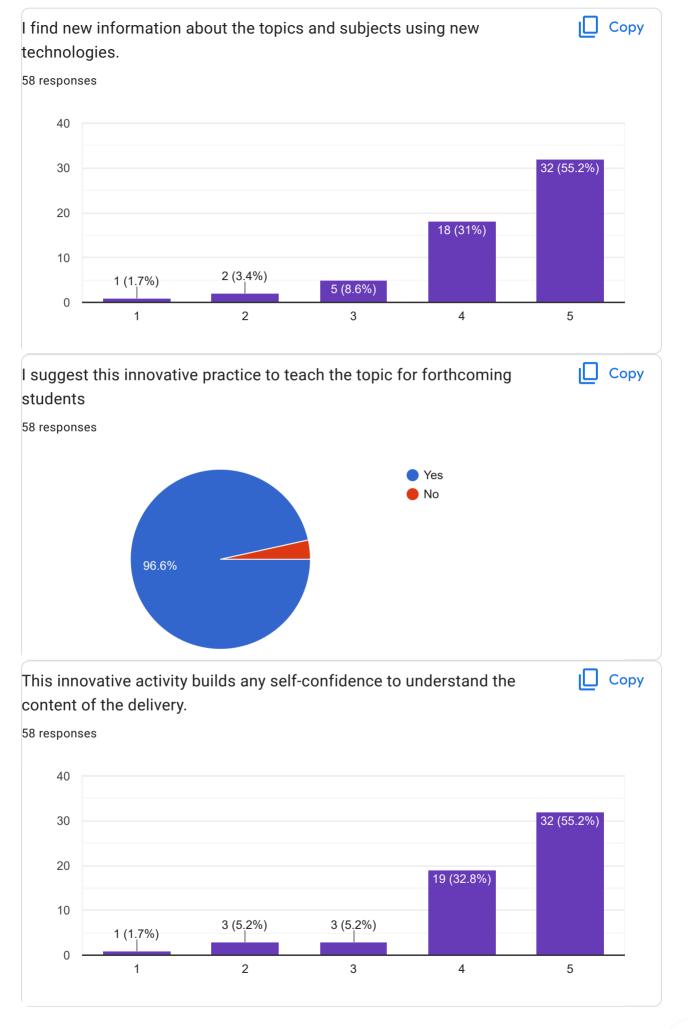

10

2 (3.4%)

2 (3.4%)

2

Publish analytics


5 (8.6%)

3

4



5

The most useful thing/skill I learned from this activity was
58 responses
Good
To solve problems
Thermal relative knowledge
Useful
Boiler
Study
Yes
Self practice
Thermal relations.basic concepts
We'll and good
Actual pv diagram
Well and good
Innovative practice
Some basics
Proceed the problems without fear
Very good
INTERPULATION
Very use fully
To gather knowledge about tha thermal power engines
Basics
I have gathered some knowledge about termal engines

This content is neither created nor endorsed by Google. Report Abuse - Terms of Service - Privacy Policy

Google Forms

